Question 382869
{{{(x-2)/(x^2-9)=(x-2)/((x+3)(x-3))}}}
.
.
{{{(x+1)/(x^2-x-12)=(x+1)/((x-4)(x+3))}}}
.
.
Use the common denominator {{{(x-4)(x+3)(x-3)}}}
{{{((x-2)(x-4))/((x-4)(x^2-9))=(x^2-6x+8)/((x-4)(x+3)(x-3))}}}
.
.
{{{((x+1)(x-3))/((x-4)(x^2-x-12))=(x^2-2x-3)/((x-4)(x+3)(x-3))}}}
.
.
{{{((x-2)(x-4))/((x-4)(x^2-9))+((x+1)(x-3))/((x-4)(x^2-x-12))=(x^2-6x+8)/((x-4)(x+3)(x-3))+(x^2-2x-3)/((x-4)(x+3)(x-3))}}}
.
.
{{{((x-2)(x-4))/((x-4)(x^2-9))+((x+1)(x-3))/((x-4)(x^2-x-12))=highlight((2x^2-8x+5)/((x-4)(x+3)(x-3)))}}}