Question 379489
y=-2x^2-2x+3 
...
first find the x intercepts.
plug y =0
-2x^2-2x+3=0
...
Find the root of the equation using quadratic formula.
discriminant b^2-4ac= 28
x1=(2+sqrt(28))/-4
x1=-1.82 
...
x2=(2-sqrt(28))/-4
x2=0.82

...
The x intercepts are (0,-1.8) & (0,0.82)
..
Using the equation y = -2x^2-2x+3 
find the vertex of the parabola
a=-2, b=-2
h=(-b/2a)
h=(2/-4)
h=-1/2
plug the value of (-1/2) in the equation to get the y value of the vertex
y= -2*(1/4)-2*-1/2+3
y=-0.5+1+3
y=3.5
Vertex ( -1/2 , 3.5)
..
since x^2 is negative the parabola opens downwards
.
generate various value of y for different values of x
x=-1, y=3
x=1,y=-1
x=-2,y=3
x=2,y=-9
x=2,y=-9
...
use a calculator or plot points and join the curve.
{{{graph(300,300,-3,2,-1,4,(-2x^2-2x+3))}}}