Question 378703
{{{23^(x)=10^(-3x)}}} Start with the given equation.



{{{ln(23^(x))=ln(10^(-3x))}}} Take the natural log of both sides.



{{{x*ln(23)=-3x*ln(10)}}} Pull down the exponents.




{{{x*ln(23)+3x*ln(10)=0}}} Add {{{3x*ln(10)}}} to both sides.



{{{x(ln(23)+3*ln(10))=0}}} Factor out the GCF 'x' from the left side.



{{{x=0/(ln(23)+3*ln(10))}}} Divide both sides by {{{ln(23)+3x*ln(10)}}} to isolate 'x'.



{{{x=0}}} Divide.



So the solution is {{{x=0}}}



If you need more help, email me at <a href="mailto:jim_thompson5910@hotmail.com?Subject=Algebra%20Help">jim_thompson5910@hotmail.com</a>


Also, feel free to check out my <a href="http://www.freewebs.com/jimthompson5910/home.html">tutoring website</a>


Jim