Question 378151
{{{drawing(300,300,-10,10,-10,10,
locate(0,9.5,8),locate(7,0,12),
green(line(-6,6,6,6)),
green(line(-6,-6,6,-6)),
locate(-7,7.5,x),
locate(-5.5,6,x),
line(-6,-8,-6,8),line(-6,8,6,8),line(6,8,6,-8),line(6,-8,-6,-8),line(-4,-6,-4,6),line(-4,6,4,6),line(4,6,4,-6),line(4,-6,-4,-6))}}}
.
.
.
The outside area would be 
{{{A=8*12=96}}}
So the frame area is,
{{{A[f]=96-60=36}}}
In terms of {{{x}}}, the frame area is 
{{{A=2(8x)+2(x(12-2x))}}}
{{{A=16x+24x-4x^2}}}
{{{A=-4x^2+40x}}}
Equate the two,
{{{-4x^2+40x=36}}}
{{{x^2-10x+9=0}}}
{{{(x-1)(x-9)=0}}}
Two solutions:
{{{x-1=0}}}
{{{highlight(x=1)}}}
The second solution (x=9) would not make sense since the frame is only 8 inches wide.