Question 377982
First simplify.
{{{(p^2+p-6)/(p^2+3p-10) =((p+3)(p-2))/((p+5)(p-2))}}}
{{{(p^2+p-6)/(p^2+3p-10)= (p+3)/(p+5) }}}
.
.
{{{(p^2+5p)/(p^2+4p+3)= (p(p+5))/((p+3)(p+1))}}}
.
.
So then,
{{{((p^2+p-6)/(p^2+3p-10))*((p^2+p-6)/(p^2+3p-10))= ((p+3)/(p+5))*((p(p+5))/((p+3)(p+1)))}}}
.
.
{{{((p^2+p-6)/(p^2+3p-10))*((p^2+p-6)/(p^2+3p-10))= highlight(p/(p+1))}}}