Question 41579
<pre>Given soccer fields are rectangular:
2 variables, the width, and the length of the soccer field.
<font color=green>The width is 5 longer than the length.</font>
<font color=red>The width times the length is 336.</font>
<font color=orange>The unit is yards.</font>
<font color=green>W=L+5</font>
<font color=red>WL=336</font>
substitute for W in "<font color=red>WL=336</font>".
(L+5)L=336  distribute
L<sup>2</sup>+5L=336  subtract 336 from both sides
L<sup>2</sup>+5L-336=0  Factor (or use quadradic formula)

2 numbers which multiply to -336 and add to 5, so 1 number must be negative.
336=112*3=56*6=28*12=14*24=7*48, but you'll notice none of those have a difference of 5..let's try 2's
336=168*2=84*4=42*8=21*16 aha!  difference of 5. so we alter the equation:

L<sup>2</sup>+5L-336=L<sup>2</sup>-16L+21L-336 
Now we factor:
L<sup>2</sup>-16L+21L-336  take out like terms:
L(L-16)+21(L-16)  put like terms 2gether
(L+21)(L-16)=0  so 1 of thoz = 0
L=-21, or it equals 16. A side is hardly negative; but definitely not for a football field, therefore L=16.
<font color=green>W=L+5</font> so <font color=green>W=16+5</font>, or 21.
W=21<font color=orange>yards</font>
L=15<font color=orange>yards</font>

..I'm beginning to think there was a simpler way of figuring this out, I cannot put my finger on it.