Question 375129
I'm assuming you want to factor.





{{{10x^3-51x^2+54x}}} Start with the given expression.



{{{x(10x^2-51x+54)}}} Factor out the GCF {{{x}}}.



Now let's try to factor the inner expression {{{10x^2-51x+54}}}



---------------------------------------------------------------



Looking at the expression {{{10x^2-51x+54}}}, we can see that the first coefficient is {{{10}}}, the second coefficient is {{{-51}}}, and the last term is {{{54}}}.



Now multiply the first coefficient {{{10}}} by the last term {{{54}}} to get {{{(10)(54)=540}}}.



Now the question is: what two whole numbers multiply to {{{540}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-51}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{540}}} (the previous product).



Factors of {{{540}}}:

1,2,3,4,5,6,9,10,12,15,18,20,27,30,36,45,54,60,90,108,135,180,270,540

-1,-2,-3,-4,-5,-6,-9,-10,-12,-15,-18,-20,-27,-30,-36,-45,-54,-60,-90,-108,-135,-180,-270,-540



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{540}}}.

1*540 = 540
2*270 = 540
3*180 = 540
4*135 = 540
5*108 = 540
6*90 = 540
9*60 = 540
10*54 = 540
12*45 = 540
15*36 = 540
18*30 = 540
20*27 = 540
(-1)*(-540) = 540
(-2)*(-270) = 540
(-3)*(-180) = 540
(-4)*(-135) = 540
(-5)*(-108) = 540
(-6)*(-90) = 540
(-9)*(-60) = 540
(-10)*(-54) = 540
(-12)*(-45) = 540
(-15)*(-36) = 540
(-18)*(-30) = 540
(-20)*(-27) = 540


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-51}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>540</font></td><td  align="center"><font color=black>1+540=541</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>270</font></td><td  align="center"><font color=black>2+270=272</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>180</font></td><td  align="center"><font color=black>3+180=183</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>135</font></td><td  align="center"><font color=black>4+135=139</font></td></tr><tr><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>108</font></td><td  align="center"><font color=black>5+108=113</font></td></tr><tr><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>90</font></td><td  align="center"><font color=black>6+90=96</font></td></tr><tr><td  align="center"><font color=black>9</font></td><td  align="center"><font color=black>60</font></td><td  align="center"><font color=black>9+60=69</font></td></tr><tr><td  align="center"><font color=black>10</font></td><td  align="center"><font color=black>54</font></td><td  align="center"><font color=black>10+54=64</font></td></tr><tr><td  align="center"><font color=black>12</font></td><td  align="center"><font color=black>45</font></td><td  align="center"><font color=black>12+45=57</font></td></tr><tr><td  align="center"><font color=black>15</font></td><td  align="center"><font color=black>36</font></td><td  align="center"><font color=black>15+36=51</font></td></tr><tr><td  align="center"><font color=black>18</font></td><td  align="center"><font color=black>30</font></td><td  align="center"><font color=black>18+30=48</font></td></tr><tr><td  align="center"><font color=black>20</font></td><td  align="center"><font color=black>27</font></td><td  align="center"><font color=black>20+27=47</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-540</font></td><td  align="center"><font color=black>-1+(-540)=-541</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-270</font></td><td  align="center"><font color=black>-2+(-270)=-272</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>-180</font></td><td  align="center"><font color=black>-3+(-180)=-183</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>-135</font></td><td  align="center"><font color=black>-4+(-135)=-139</font></td></tr><tr><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>-108</font></td><td  align="center"><font color=black>-5+(-108)=-113</font></td></tr><tr><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>-90</font></td><td  align="center"><font color=black>-6+(-90)=-96</font></td></tr><tr><td  align="center"><font color=black>-9</font></td><td  align="center"><font color=black>-60</font></td><td  align="center"><font color=black>-9+(-60)=-69</font></td></tr><tr><td  align="center"><font color=black>-10</font></td><td  align="center"><font color=black>-54</font></td><td  align="center"><font color=black>-10+(-54)=-64</font></td></tr><tr><td  align="center"><font color=black>-12</font></td><td  align="center"><font color=black>-45</font></td><td  align="center"><font color=black>-12+(-45)=-57</font></td></tr><tr><td  align="center"><font color=red>-15</font></td><td  align="center"><font color=red>-36</font></td><td  align="center"><font color=red>-15+(-36)=-51</font></td></tr><tr><td  align="center"><font color=black>-18</font></td><td  align="center"><font color=black>-30</font></td><td  align="center"><font color=black>-18+(-30)=-48</font></td></tr><tr><td  align="center"><font color=black>-20</font></td><td  align="center"><font color=black>-27</font></td><td  align="center"><font color=black>-20+(-27)=-47</font></td></tr></table>



From the table, we can see that the two numbers {{{-15}}} and {{{-36}}} add to {{{-51}}} (the middle coefficient).



So the two numbers {{{-15}}} and {{{-36}}} both multiply to {{{540}}} <font size=4><b>and</b></font> add to {{{-51}}}



Now replace the middle term {{{-51x}}} with {{{-15x-36x}}}. Remember, {{{-15}}} and {{{-36}}} add to {{{-51}}}. So this shows us that {{{-15x-36x=-51x}}}.



{{{10x^2+highlight(-15x-36x)+54}}} Replace the second term {{{-51x}}} with {{{-15x-36x}}}.



{{{(10x^2-15x)+(-36x+54)}}} Group the terms into two pairs.



{{{5x(2x-3)+(-36x+54)}}} Factor out the GCF {{{5x}}} from the first group.



{{{5x(2x-3)-18(2x-3)}}} Factor out {{{18}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(5x-18)(2x-3)}}} Combine like terms. Or factor out the common term {{{2x-3}}}



--------------------------------------------------



So {{{x(10x^2-51x+54)}}} then factors further to {{{x(5x-18)(2x-3)}}}



===============================================================



Answer:



So {{{10x^3-51x^2+54x}}} completely factors to {{{x(5x-18)(2x-3)}}}.



In other words, {{{10x^3-51x^2+54x=x(5x-18)(2x-3)}}}.



Note: you can check the answer by expanding {{{x(5x-18)(2x-3)}}} to get {{{10x^3-51x^2+54x}}} or by graphing the original expression and the answer (the two graphs should be identical).




If you need more help, email me at <a href="mailto:jim_thompson5910@hotmail.com?Subject=Algebra%20Help">jim_thompson5910@hotmail.com</a>


Also, feel free to check out my <a href="http://www.freewebs.com/jimthompson5910/home.html">tutoring website</a>


Jim