Question 375099


{{{(s+1/5)(s+1/5)}}} Start with the given expression.



Now let's FOIL the expression.



Remember, when you FOIL an expression, you follow this procedure:



{{{(highlight(s)+1/5)(highlight(s)+1/5)}}} Multiply the <font color="red">F</font>irst terms:{{{(s)*(s)=s^2}}}.



{{{(highlight(s)+1/5)(s+highlight(1/5)))}}} Multiply the <font color="red">O</font>uter terms:{{{(s)*((1/5))=(1/5)s}}}.



{{{(s+highlight(1/5))(highlight(s)+1/5)}}} Multiply the <font color="red">I</font>nner terms:{{{((1/5))*(s)=(1/5)s}}}.



{{{(s+highlight(1/5))(s+highlight(1/5))}}} Multiply the <font color="red">L</font>ast terms:{{{((1/5))*((1/5))=1/25}}}.



---------------------------------------------------

So we have the terms: {{{s^2}}}, {{{(1/5)s}}}, {{{(1/5)s}}}, {{{1/25}}} 



{{{s^2+(1/5)s+(1/5)s+1/25}}} Now add every term listed above to make a single expression.



{{{s^2+(2/5)s+1/25}}} Now combine like terms.



So {{{(s+1/5)(s+1/5)}}} FOILs to {{{s^2+(2/5)s+1/25}}}.



In other words, {{{(s+1/5)(s+1/5)=s^2+(2/5)s+1/25}}}.



If you need more help, email me at <a href="mailto:jim_thompson5910@hotmail.com?Subject=Algebra%20Help">jim_thompson5910@hotmail.com</a>


Also, feel free to check out my <a href="http://www.freewebs.com/jimthompson5910/home.html">tutoring website</a>


Jim