Question 375116

{{{sqrt(4*x^8)}}} Start with the given expression.



{{{sqrt(4*x^2*x^2*x^2*x^2)}}} Factor {{{x^8}}} into {{{x^2*x^2*x^2*x^2}}}



{{{sqrt(4)*sqrt(x^2)*sqrt(x^2)*sqrt(x^2)*sqrt(x^2)}}} Break up the square root using the identity {{{sqrt(A*B)=sqrt(A)*sqrt(B)}}}.



{{{2*sqrt(x^2)*sqrt(x^2)*sqrt(x^2)*sqrt(x^2)}}} Take the square root of {{{4}}} to get {{{2}}}.



{{{2*x*x*x*x}}} Take the square root of {{{x^2}}} to get {{{x}}}.



{{{2x^4}}} Rearrange and multiply the terms.


==================================================


Answer:



So {{{sqrt(4*x^8)}}} simplifies to {{{2x^4}}}



In other words, {{{sqrt(4*x^8)=2x^4}}} where x is nonnegative.




If you need more help, email me at <a href="mailto:jim_thompson5910@hotmail.com?Subject=Algebra%20Help">jim_thompson5910@hotmail.com</a>


Also, feel free to check out my <a href="http://www.freewebs.com/jimthompson5910/home.html">tutoring website</a>


Jim