Question 374974
a) No,
Let {{{u=x^2}}}, {{{du/dx=2x}}}, {{{dy/du=e^u}}}
{{{dy/dx=(dy/du)(du/dx)}}}
{{{dy/dx=e^u*2x}}}
{{{dy/dx=2xe^(x^2)}}}
.
.
.
b) Yes, {{{dy/dx=-2(3x+1)sin(3x^2+2x)}}}
.
.
.
c) You didn't provide an answer.
Let {{{u=sin(3x^2-1)}}}, {{{y=u^2}}}, {{{dy/du=2u}}}
Let {{{v=3x^2-1}}}.
{{{u=sin(v)}}}
{{{du/dv=cos(v)}}}
{{{dv/dx=6x}}}
.
.
.
{{{dy/dx=(dy/du)*(du/dv)*(dv/dx)}}}
{{{dy/dx=2u*cos(v)*6x}}}
{{{highlight(dy/dx=12x*sin(3x^2-1)*cos(3x^2-1))}}}