Question 374828
{{{tan(B)=40/9}}}
.
.
{{{tan(B)=sin(B)/cos(B)}}}
{{{sin(B)=40/H}}}
{{{cos(B)=9/H}}}
.
.
{{{(sin(B))^2+(cos(B))^2=1}}}
{{{(40/H)^2+(9/H^2)=1}}}
{{{1600/H^2+81/H^2=1}}}
{{{1681/H^2=1}}}
{{{H^2=1681}}}
{{{H=sqrt(1681)}}}
{{{H=41}}}
So then,
{{{sin(B)=40/41}}}
{{{cos(B)=9/41}}}
.
.
.
{{{(sin(A))^2+(cos(A))^2=1}}}
{{{(sin(A))^2+((9(34))/(34)^2)=1}}}
{{{(sin(A))^2+(9/34)=1}}}
{{{(sin(A))^2=34/34-9/34}}}
{{{(sin(A))^2=25/34}}}
{{{sin(A)=5/sqrt(34)}}}
{{{sin(A)=(5*sqrt(34))/34}}}
.
.
{{{tan(A)=sin(A)/cos(A)}}}
{{{tan(A)=5/3}}}