Question 369143
{{{(12x^(2)-6x)/(24x)}}} is an expression. All you can do to an expression is simplify it. There is no "solution" for an expression.<br>
This is a fraction. And simplifying a fraction means reducing it if possible. And reducing fractions involves canceling common factors. And to cancel factors we have to know what the factors are.<br>
So we start by factoring. In the numerator we have a Greatest Common Factor (GCF) that is not one. The GCF is 6x so the numerators factors as shown below:
{{{(6x(2x-1))/(24x)}}}
And we can factor the denominator:
{{{(6x(2x-1))/(6x*4)}}}
Now we can see that 6x is a factor of both the numerator and the denominator. We can cancel them:
{{{(cross(6x)(2x-1))/(cross(6x)*4)}}}
leaving
{{{(2x-1)/4)}}}
This is the simpified fraction.