Question 368177
Note: *[Tex \LARGE \left(x_{1}, y_{1}\right)] is the first point *[Tex \LARGE \left(-14,-12\right)]. So this means that {{{x[1]=-14}}} and {{{y[1]=-12}}}.

Also, *[Tex \LARGE \left(x_{2}, y_{2}\right)] is the second point *[Tex \LARGE \left(-18,-16\right)].  So this means that {{{x[2]=-18}}} and {{{y[2]=-16}}}.



{{{m=(y[2]-y[1])/(x[2]-x[1])}}} Start with the slope formula.



{{{m=(-16--12)/(-18--14)}}} Plug in {{{y[2]=-16}}}, {{{y[1]=-12}}}, {{{x[2]=-18}}}, and {{{x[1]=-14}}}



{{{m=(-4)/(-18--14)}}} Subtract {{{-12}}} from {{{-16}}} to get {{{-4}}}



{{{m=(-4)/(-4)}}} Subtract {{{-14}}} from {{{-18}}} to get {{{-4}}}



{{{m=1}}} Reduce



So the slope of the line that goes through the points *[Tex \LARGE \left(-14,-12\right)] and *[Tex \LARGE \left(-18,-16\right)] is {{{m=1}}}




So you are correct. Good job.



If you need more help, email me at <a href="mailto:jim_thompson5910@hotmail.com?Subject=Algebra%20Help">jim_thompson5910@hotmail.com</a>


Also, feel free to check out my <a href="http://www.freewebs.com/jimthompson5910/home.html">tutoring website</a>


Jim