Question 367753
Composition of Functions problem: 
r(t)=q(p(t))
Given: 
t | p(t) | q(t) | r(t)
-----------------------------
0 | 4 | ?? | ??...........r(0)= q(p(0))=q(4)= 5
..........................q(0) =q[p(5)] = r(5) = 3

-----------------------------
1 | ?? | 2 | 1..........................p(1) = q^-1(r(1))= q^-1(1) = 5
-----------------------------
2 | ?? | ?? | 0...........p(2) = q^-1(r(2)) = q^-1(0)= 3
..........................q(2) = p^-1(r(2)) = p^-1(0) = 5 
-----------------------------
3 | 2 | 0 | 4
-----------------------------
4 | 1 | 5 | ??................r(4) = q(p(4)) = q(1)=2
-----------------------------
5 | 0 | 1 | 3
----------------------------- 
Fill in ?? with correct answer. I need help with a process to solve this problem. 
I can solve r(0)=?? by this method: r(0)=q(p(0)) knowing that r(0) will be equal to q(p(0)), then r(0)=q(4) because I find that p(0) is equal to 4 which becomes q(4), next I see that q(4) is equal to 5, therefore r(0)=5.
=======================
Cheers,
Stan H.