Question 367308


{{{r^3+3r^2-54r}}} Start with the given expression.



{{{r(r^2+3r-54)}}} Factor out the GCF {{{r}}}.



Now let's try to factor the inner expression {{{r^2+3r-54}}}



---------------------------------------------------------------



Looking at the expression {{{r^2+3r-54}}}, we can see that the first coefficient is {{{1}}}, the second coefficient is {{{3}}}, and the last term is {{{-54}}}.



Now multiply the first coefficient {{{1}}} by the last term {{{-54}}} to get {{{(1)(-54)=-54}}}.



Now the question is: what two whole numbers multiply to {{{-54}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{3}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-54}}} (the previous product).



Factors of {{{-54}}}:

1,2,3,6,9,18,27,54

-1,-2,-3,-6,-9,-18,-27,-54



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-54}}}.

1*(-54) = -54
2*(-27) = -54
3*(-18) = -54
6*(-9) = -54
(-1)*(54) = -54
(-2)*(27) = -54
(-3)*(18) = -54
(-6)*(9) = -54


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{3}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-54</font></td><td  align="center"><font color=black>1+(-54)=-53</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>-27</font></td><td  align="center"><font color=black>2+(-27)=-25</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>-18</font></td><td  align="center"><font color=black>3+(-18)=-15</font></td></tr><tr><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>-9</font></td><td  align="center"><font color=black>6+(-9)=-3</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>54</font></td><td  align="center"><font color=black>-1+54=53</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>27</font></td><td  align="center"><font color=black>-2+27=25</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>18</font></td><td  align="center"><font color=black>-3+18=15</font></td></tr><tr><td  align="center"><font color=red>-6</font></td><td  align="center"><font color=red>9</font></td><td  align="center"><font color=red>-6+9=3</font></td></tr></table>



From the table, we can see that the two numbers {{{-6}}} and {{{9}}} add to {{{3}}} (the middle coefficient).



So the two numbers {{{-6}}} and {{{9}}} both multiply to {{{-54}}} <font size=4><b>and</b></font> add to {{{3}}}



Now replace the middle term {{{3r}}} with {{{-6r+9r}}}. Remember, {{{-6}}} and {{{9}}} add to {{{3}}}. So this shows us that {{{-6r+9r=3r}}}.



{{{r^2+highlight(-6r+9r)-54}}} Replace the second term {{{3r}}} with {{{-6r+9r}}}.



{{{(r^2-6r)+(9r-54)}}} Group the terms into two pairs.



{{{r(r-6)+(9r-54)}}} Factor out the GCF {{{r}}} from the first group.



{{{r(r-6)+9(r-6)}}} Factor out {{{9}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(r+9)(r-6)}}} Combine like terms. Or factor out the common term {{{r-6}}}



--------------------------------------------------



So {{{r(r^2+3r-54)}}} then factors further to {{{r(r+9)(r-6)}}}



===============================================================



Answer:



So {{{r^3+3r^2-54r}}} completely factors to {{{r(r+9)(r-6)}}}.



In other words, {{{r^3+3r^2-54r=r(r+9)(r-6)}}}.



Note: you can check the answer by expanding {{{r(r+9)(r-6)}}} to get {{{r^3+3r^2-54r}}} or by graphing the original expression and the answer (the two graphs should be identical).



If you need more help, email me at <a href="mailto:jim_thompson5910@hotmail.com?Subject=Algebra%20Help">jim_thompson5910@hotmail.com</a>


Also, feel free to check out my <a href="http://www.freewebs.com/jimthompson5910/home.html">tutoring website</a>


Jim