Question 40576
Solve:
{{{6r^3+7r^2 = r}}} Factor an r from the left side.
{{{r(6r^2+7r) = r}}} Divide both sides by r.
{{{6r^2+7r = 1}}} Subtract 1 from both sides.
{{{6r^2+7r-1 = 0}}} Use the quadratic formula to solve {{{x=(-b+-sqrt(b^2-4ac))/2a}}}.

{{{x = (-7+-sqrt(7^2-4(6)(-1)))/2(6)}}}
{{{x = (-7+-sqrt(49+24))/12}}}
{{{x = (-7+-sqrt(73))/12}}}

The roots are:

{{{x = (-7 + sqrt(73))/12}}}
{{{x = (-7 -  sqrt(73))/12}}}