Question 360726
{{{A=P(1+r/n)^(n*t)}}} Start with the compound interest formula



{{{A=8000(1+0.0135/365)^(365*1)}}} Plug in {{{P=8000}}} (the amount invested), {{{r=0.0135}}} (the decimal equivalent of 1.35%), {{{n=365}}} (since it's compounded daily) and {{{t=1}}} (for one year).



{{{A=8000(1+0.00003698630137)^(365*1)}}} Evaluate {{{0.0135/365}}}} to get {{{0.00003698630137}}}



{{{A=8000(1.00003698630137)^(365*1)}}} Add {{{1}}} to {{{3.6986301369863e-005}}} to get {{{1.00003698630137}}}



{{{A=8000(1.00003698630137)^(365)}}} Multiply {{{365}}} and {{{1}}} to get {{{365}}}.



{{{A=8000(1.0135912834057)}}} Evaluate {{{(1.00003698630137)^(365)}}} to get {{{1.0135912834057}}}.



{{{A=8108.73026724562}}} Multiply {{{8000}}} and {{{1.0135912834057}}} to get {{{8108.73026724562}}}.



{{{A=8108.73}}} Round to the nearest hundredth (ie to the nearest penny).



So in one year, you'll have $8108.73 in the account.