Question 359751
You need to expand it and simplify.
.
.
.
{{{ 2/(x^2-x-6) + 1/(x^2+x-2) = 3/(x^2+2x-3)}}}
{{{2/((x-3)(x+2)) + 1/((x+2)(x-1)) = 3/((x+3)(x-1))}}}
Find a common denominator, {{{(x-3)(x+3)(x+2)(x-1)}}}
{{{(2(x-3)(x-1))/((x-3)(x+3)(x-1)(x+2)) + ((x-3)(x+3))/((x-3)(x+3)(x-1)(x+2))  = (3(x-3)(x+2))/((x-3)(x+3)(x-1)(x+2)) }}}
.
.
{{{(2(x+3)(x-1) + (x-3)(x+3)- 3(x-3)(x+2))/((x-3)(x+3)(x-1)(x+2))=0 }}}
.
.
{{{(2(x^2+2x-3) + (x^2-9)- 3(x^2-x-6))/((x-3)(x+3)(x-1)(x+2))=0 }}}
.
.
{{{(2x^2+4x-6 + x^2-9-3x^2+3x+18)/((x-3)(x+3)(x-1)(x+2))=0 }}}
.
.
{{{(7x+3)/((x-3)(x+3)(x-1)(x+2))=0 }}}
.
.
{{{7x+3=0}}}
{{{7x=-3}}}
{{{highlight(x=-3/7)}}}