Question 358805
Find a common denominator,{{{x^2-1=(x+1)(x-1)}}}
{{{1/(x+1)+(2x)/(x^2-1)- 1/(x-1)=(x-1)/((x+1)(x-1))+(2x)/(x^2-1)- (x+1)/((x-1)(x+1))}}}
{{{1/(x+1)+(2x)/(x^2-1)- 1/(x-1)=(x-1+2x-(x+1))/((x-1)(x+1))}}}
{{{1/(x+1)+(2x)/(x^2-1)- 1/(x-1)=(x-1+2x-x-1)/((x-1)(x+1))}}}
{{{1/(x+1)+(2x)/(x^2-1)- 1/(x-1)=(2(x-1))/((x-1)(x+1))}}}
{{{1/(x+1)+(2x)/(x^2-1)- 1/(x-1)=highlight(2/(x+1))}}}