Question 355547


{{{x^2-6x-10=0}}} Start with the given equation.



Notice that the quadratic {{{x^2-6x-10}}} is in the form of {{{Ax^2+Bx+C}}} where {{{A=1}}}, {{{B=-6}}}, and {{{C=-10}}}



Let's use the quadratic formula to solve for "x":



{{{x = (-B +- sqrt( B^2-4AC ))/(2A)}}} Start with the quadratic formula



{{{x = (-(-6) +- sqrt( (-6)^2-4(1)(-10) ))/(2(1))}}} Plug in  {{{A=1}}}, {{{B=-6}}}, and {{{C=-10}}}



{{{x = (6 +- sqrt( (-6)^2-4(1)(-10) ))/(2(1))}}} Negate {{{-6}}} to get {{{6}}}. 



{{{x = (6 +- sqrt( 36-4(1)(-10) ))/(2(1))}}} Square {{{-6}}} to get {{{36}}}. 



{{{x = (6 +- sqrt( 36--40 ))/(2(1))}}} Multiply {{{4(1)(-10)}}} to get {{{-40}}}



{{{x = (6 +- sqrt( 36+40 ))/(2(1))}}} Rewrite {{{sqrt(36--40)}}} as {{{sqrt(36+40)}}}



{{{x = (6 +- sqrt( 76 ))/(2(1))}}} Add {{{36}}} to {{{40}}} to get {{{76}}}



{{{x = (6 +- sqrt( 76 ))/(2)}}} Multiply {{{2}}} and {{{1}}} to get {{{2}}}. 



{{{x = (6 +- 2*sqrt(19))/(2)}}} Simplify the square root  (note: If you need help with simplifying square roots, check out this <a href=http://www.algebra.com/algebra/homework/Radicals/simplifying-square-roots.solver> solver</a>)  



{{{x = (6)/(2) +- (2*sqrt(19))/(2)}}} Break up the fraction.  



{{{x = 3 +- sqrt(19)}}} Reduce.  



{{{x = 3+sqrt(19)}}} or {{{x = 3-sqrt(19)}}} Break up the expression.  



So the solutions are {{{x = 3+sqrt(19)}}} or {{{x = 3-sqrt(19)}}} 



If you need more help, email me at <a href="mailto:jim_thompson5910@hotmail.com?Subject=Algebra%20Help">jim_thompson5910@hotmail.com</a>


Also, feel free to check out my <a href="http://www.freewebs.com/jimthompson5910/home.html">tutoring website</a>


Jim