Question 355027
P(had)={{{0.6}}}
P(didn't)={{{0.4}}}
.
.
.
At least 8 means 8,9,10,11,12,13,and 14.
.
.
{{{P(8)=3003*(0.4)^(14-8)*(0.6)^8=0.20660}}}
{{{P(9)=2002*(0.4)^(14-9)*(0.6)^9=0.20660}}}
{{{P(10)=1001*(0.4)^(14-10)*(0.6)^10=0.15495}}}
{{{P(11)=364*(0.4)^(14-11)*(0.6)^11=0.08542}}}
{{{P(12)=91*(0.4)^(14-12)*(0.6)^12=0.03169}}}
{{{P(13)=14*(0.4)^(14-13)*(0.6)^13=0.0731}}}
{{{P(14)=1*(0.4)^(14-14)*(0.6)^14=0.00078}}}
.
.
.
{{{P=P(8)+P(9)+P(10)+P(11)+P(12)+P(13)+P(14)}}}

{{{highlight(P=0.69245)}}}