Question 355042


Looking at the expression {{{x^2-11x+30}}}, we can see that the first coefficient is {{{1}}}, the second coefficient is {{{-11}}}, and the last term is {{{30}}}.



Now multiply the first coefficient {{{1}}} by the last term {{{30}}} to get {{{(1)(30)=30}}}.



Now the question is: what two whole numbers multiply to {{{30}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-11}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{30}}} (the previous product).



Factors of {{{30}}}:

1,2,3,5,6,10,15,30

-1,-2,-3,-5,-6,-10,-15,-30



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{30}}}.

1*30 = 30
2*15 = 30
3*10 = 30
5*6 = 30
(-1)*(-30) = 30
(-2)*(-15) = 30
(-3)*(-10) = 30
(-5)*(-6) = 30


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-11}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>30</font></td><td  align="center"><font color=black>1+30=31</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>15</font></td><td  align="center"><font color=black>2+15=17</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>10</font></td><td  align="center"><font color=black>3+10=13</font></td></tr><tr><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>5+6=11</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-30</font></td><td  align="center"><font color=black>-1+(-30)=-31</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-15</font></td><td  align="center"><font color=black>-2+(-15)=-17</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>-10</font></td><td  align="center"><font color=black>-3+(-10)=-13</font></td></tr><tr><td  align="center"><font color=red>-5</font></td><td  align="center"><font color=red>-6</font></td><td  align="center"><font color=red>-5+(-6)=-11</font></td></tr></table>



From the table, we can see that the two numbers {{{-5}}} and {{{-6}}} add to {{{-11}}} (the middle coefficient).



So the two numbers {{{-5}}} and {{{-6}}} both multiply to {{{30}}} <font size=4><b>and</b></font> add to {{{-11}}}



Now replace the middle term {{{-11x}}} with {{{-5x-6x}}}. Remember, {{{-5}}} and {{{-6}}} add to {{{-11}}}. So this shows us that {{{-5x-6x=-11x}}}.



{{{x^2+highlight(-5x-6x)+30}}} Replace the second term {{{-11x}}} with {{{-5x-6x}}}.



{{{(x^2-5x)+(-6x+30)}}} Group the terms into two pairs.



{{{x(x-5)+(-6x+30)}}} Factor out the GCF {{{x}}} from the first group.



{{{x(x-5)-6(x-5)}}} Factor out {{{6}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(x-6)(x-5)}}} Combine like terms. Or factor out the common term {{{x-5}}}



===============================================================



Answer:



So {{{x^2-11x+30}}} factors to {{{(x-6)(x-5)}}}.



In other words, {{{x^2-11x+30=(x-6)(x-5)}}}.



Note: you can check the answer by expanding {{{(x-6)(x-5)}}} to get {{{x^2-11x+30}}} or by graphing the original expression and the answer (the two graphs should be identical).



If you need more help, email me at <a href="mailto:jim_thompson5910@hotmail.com?Subject=Algebra%20Help">jim_thompson5910@hotmail.com</a>


Also, feel free to check out my <a href="http://www.freewebs.com/jimthompson5910/home.html">tutoring website</a>


Jim