Question 353125
{{{root(5,(-1/243))}}}
Hint:{{{-3^5=-243}}}
.
------------------------
.
Divide and simplify.
{{{((7v-49)/22)/((v-7)/(4v))}}}
Hint:Dividing by a fraction is the same as multiplying by its reciprocal
{{{((7v-49)/22)/((v-7)/(4v))=((7(v-7))/22)*((4v)/(v-7)))}}}
.
------------------------
.
{{{v^3 /v^19 =1/v^16}}} Correct 
.
------------------------
.
{{{(35b^3+18b^2+32b+35)/(5b+4)}}}
.
Use polynomial long division
.
.
.
<pre>

          7b^2 + (-2b) +   8
        __________________________
5b + 4 | 35b^3 + 18b^2 +  32b + 35
      -  35b^3 + 28b^2
       ---------------
                -10b^2 +  32b
             -  -10b^2 -   8b
                --------------
                          40b + 35
                      -   40b + 32
                          --------
                                 3
</pre>
{{{highlight((35b^3+18b^2+32b+35)/(5b+4)=(7b^2-2b +   8)+3/(5b+4))}}}
.
------------------------
.
{{{2x^2-3x=-6}}}
{{{2x^2-3x+6=0}}}
The only issue is the value of the discriminant,
{{{b^2-4ac=9-4(2)(6)=9-48=-39}}}
The rest of the solution is correct. 
({{{3/2+i*(highlight(sqrt(39))/2)}}},{{{3/2-i*(highlight(sqrt(39))/2) }}}
.
------------------------
.
{{{root(14,(-3))^14=3}}} Correct