Question 352478


{{{8(2x-1)<4(2x-4)}}} Start with the given inequality.



{{{16x-8<8x-16}}} Distribute.



{{{16x<8x-16+8}}} Add {{{8}}} to both sides.



{{{16x-8x<-16+8}}} Subtract {{{8x}}} from both sides.



{{{8x<-16+8}}} Combine like terms on the left side.



{{{8x<-8}}} Combine like terms on the right side.



{{{x<(-8)/(8)}}} Divide both sides by {{{8}}} to isolate {{{x}}}. 



{{{x<-1}}} Reduce.



----------------------------------------------------------------------


Answer:


So the solution is {{{x<-1}}} 



So the answer in interval notation is *[Tex \LARGE \left(-\infty,-1\right)]



If you need more help, email me at <a href="mailto:jim_thompson5910@hotmail.com?Subject=Algebra%20Help">jim_thompson5910@hotmail.com</a>


Also, feel free to check out my <a href="http://www.freewebs.com/jimthompson5910/home.html">tutoring website</a>


Jim