Question 352227


{{{sqrt(12*a^2*b)}}} Start with the given expression.



{{{sqrt(4*3*a^2*b)}}} Factor {{{12}}} into {{{4*3}}}



{{{sqrt(4)*sqrt(3)*sqrt(a^2)*sqrt(b)}}} Break up the square root using the identity {{{sqrt(A*B)=sqrt(A)*sqrt(B)}}}.



{{{2*sqrt(3)*sqrt(a^2)*sqrt(b)}}} Take the square root of {{{4}}} to get {{{2}}}.



{{{2*sqrt(3)*a*sqrt(b)}}} Take the square root of {{{a^2}}} to get {{{a}}}.



{{{2a*sqrt(3b)}}} Rearrange and multiply the terms.


==================================================


Answer:



So {{{sqrt(12*a^2*b)}}} simplifies to {{{2a*sqrt(3b)}}}



In other words, {{{sqrt(12*a^2*b)=2a*sqrt(3b)}}} where every variable is non-negative.