Question 352220
Note: {{{sqrt(50a^3)=sqrt(25*a^2*a)=sqrt(25)*sqrt(a^2)*sqrt(a)=5a*sqrt(2a)}}}, which means that {{{sqrt(50a^3)=5a*sqrt(2a)}}}



So {{{sqrt(2a)+6*sqrt(50a^3)=sqrt(2a)+6*5a*sqrt(2a)=sqrt(2a)+30a*sqrt(2a)=(1+30a)*sqrt(2a)}}}



So {{{sqrt(2a)+6*sqrt(50a^3)=(1+30a)*sqrt(2a)}}} where {{{a>=0}}}