Question 351365


Looking at the expression {{{2y^2-15y+12}}}, we can see that the first coefficient is {{{2}}}, the second coefficient is {{{-15}}}, and the last term is {{{12}}}.



Now multiply the first coefficient {{{2}}} by the last term {{{12}}} to get {{{(2)(12)=24}}}.



Now the question is: what two whole numbers multiply to {{{24}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-15}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{24}}} (the previous product).



Factors of {{{24}}}:

1,2,3,4,6,8,12,24

-1,-2,-3,-4,-6,-8,-12,-24



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{24}}}.

1*24 = 24
2*12 = 24
3*8 = 24
4*6 = 24
(-1)*(-24) = 24
(-2)*(-12) = 24
(-3)*(-8) = 24
(-4)*(-6) = 24


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-15}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>24</font></td><td  align="center"><font color=black>1+24=25</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>12</font></td><td  align="center"><font color=black>2+12=14</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>8</font></td><td  align="center"><font color=black>3+8=11</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>4+6=10</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-24</font></td><td  align="center"><font color=black>-1+(-24)=-25</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-12</font></td><td  align="center"><font color=black>-2+(-12)=-14</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>-8</font></td><td  align="center"><font color=black>-3+(-8)=-11</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>-4+(-6)=-10</font></td></tr></table>



From the table, we can see that there are no pairs of numbers which add to {{{-15}}}. So {{{2y^2-15y+12}}} cannot be factored.



===============================================================


<a name="ans">


Answer:



So {{{2y^2-15y+12}}} doesn't factor at all (over the rational numbers).



So {{{2y^2-15y+12}}} is prime.



If you need more help, email me at <a href="mailto:jim_thompson5910@hotmail.com?Subject=Algebra%20Help">jim_thompson5910@hotmail.com</a>


Also, feel free to check out my <a href="http://www.freewebs.com/jimthompson5910/home.html">tutoring website</a>


Jim