Question 349028
log^6((1)/(216))^((2)/(3))

To find an approximate value of log^6((1)/(216))^((2)/(3)), use the formula log^na=(ln(a))/(ln(n)).
(ln((1)/(216)))/(ln(6))

Find the value of each expression using a calculator.
-3

Second Answer=

log^2(3)

To find an approximate value of log^2(3), use the formula log^na=(ln(a))/(ln(n)).
(ln(3))/(ln(2))

Find the value of each expression without using a calculator.
1.58




Third Answer=
log^2(24)

To find an approximate value of log^2(24), use the formula log^na=(ln(a))/(ln(n)).
(ln(24))/(ln(2))

Find the value of each expression using a calculator.
4.58



Fourth Answer=
log^8(24)

To find an approximate value of log^8(24), use the formula log^na=(ln(a))/(ln(n)).
(ln(24))/(ln(8))

Find the value of each expression using a calculator.
1.53