Question 346721
{{{1/(x+3) - 1/(x+4) = 1/2}}}
Use the common denominator, {{{(x+3)*(x+4)}}}
{{{(x+4)/((x+3)(x+4))-(x+3)/((x+3)(x+4))=((1/2)(x+3)(x+4))/((x+3)(x+4))}}}
{{{((x+4)-(x+3)-(1/2)(x+3)(x+4))/((x+3)(x+4))=0}}}
Multiply both sides by 2.
{{{(2(x+4)-2(x+3)-(x+3)(x+4))/((x+3)(x+4))=0}}}
{{{(2x+8-2x-6-(x^2+7x+12))/((x+3)(x+4))=0}}}
{{{(2-x^2-7x-12)/((x+3)(x+4))=0}}}
{{{-(x^2+7x+10)/((x+3)(x+4))=0}}}
{{{((x+2)(x+5))/((x+3)(x+4))=0}}}
Two solutions:
{{{x+2=0}}}
{{{highlight(x=-2)}}}
.
.
.
{{{x+5=0}}}
{{{highlight(x=-5)}}}
.
.
.