Question 345348
Solve Inequality
Express the answer in terms of intervals, if possible.

(5x + 1)(8 - 16x) > 0


5x + 1 > 0 OR 8 - 16x > 0
5x > - 1  OR - 16x > - 8
{{{x > -1/5}}}   OR   {{{x < (-8)/-16}}} ------ {{{x < 1/2}}} 


Therefore, {{{highlight_green((-1/5) < x < (1/2))}}}


--------
Check
--------

{{{x < -1/5}}}......Let x = - 1

(5x + 1)(8 - 16x) > 0_____(-5 + 1)(8 + 16) > 0_____(-4)(24) > 0 (FALSE)


{{{-1/5 < x < 1/2}}}......Let x = 0

(5x + 1)(8 - 16x) > 0_____(0 + 1)(8 - 0) > 0_____(1)(8) > 0 (TRUE)


{{{x > 1/2}}}......Let x = 1

(5x + 1)(8 - 16x) > 0_____(5 + 1)(8 - 16) > 0_____(6)(-8) > 0 (FALSE)