Question 341265
{{{x^2-x-2=(x-2)(x+1)}}}
{{{x^2-5x+6=(x-3)(x-2)}}}
LCD={{{(x-2)(x-3)(x+1)}}}
.
.
.
{{{1/(x^2-x-2)=(x-3)/((x-2)(x-3)(x+1))}}}
{{{x/(x^2-5x+6)=(x(x+1))/((x-2)(x-3)(x+1))}}}
{{{1/(x^2-x-2)-x/(x^2-5x+6)=(x-3)/((x-2)(x-3)(x+1))-(x(x+1))/((x-2)(x-3)(x+1))}}}
{{{1/(x^2-x-2)-x/(x^2-5x+6)=(x-3-(x(x+1)))/((x-2)(x-3)(x+1))}}}
{{{1/(x^2-x-2)-x/(x^2-5x+6)=(x-3-x^2-x)/((x-2)(x-3)(x+1))}}}
{{{1/(x^2-x-2)-x/(x^2-5x+6)=(-(x^2+3))/((x-2)(x-3)(x+1))}}}