Question 339921
Let {{{u=x^(-4)}}}, then {{{u^2=x^(-8)}}},
{{{u^2-17u+16=0}}}
{{{(u-1)(u-16)=0}}}
Two u solutions:
{{{u-1=0}}}
{{{u=1}}}
{{{x^(-4)=1}}}
{{{x^(4)=1}}}
{{{x^4-1=0}}}
{{{(x^2-1)(x^2+1)=0}}}
{{{(x-1)(x+1)(x^2+1)=0}}}
Four x solutions: x={{{-1}}},{{{1}}},{{{-i}}},{{{i}}}
.
.
.
{{{u-16=0}}}
{{{u=16}}}
{{{x^(-4)=16}}}
{{{x^(4)=1/16}}}
{{{x^4-1/16=0}}}
{{{(x^2-1/4)(x^2+1/4)=0}}}
{{{(x-1/2)(x+1/2)(x^2+1/4)=0}}}
Four x solutions: x={{{-1/2}}},{{{1/2}}},{{{-(1/2)i}}},{{{(1/2)i}}}