Question 339167
Make a table detailing ALL the possible ways to roll two dice and their corresponding sum


<TABLE BORDER=1><TR><TH></TH><TH>1</TH><TH>2</TH><TH>3</TH><TH>4</TH><TH>5</TH><TH>6</TH></TR><TR><TH>1</TH><TD>2</TD><TD>3</TD><TD>4</TD><TD>5</TD><TD>6</TD><TD>7</TD></TR><TR><TH>2</TH><TD>3</TD><TD>4</TD><TD>5</TD><TD>6</TD><TD>7</TD><TD>8</TD></TR><TR><TH>3</TH><TD>4</TD><TD>5</TD><TD>6</TD><TD>7</TD><TD>8</TD><TD>9</TD></TR><TR><TH>4</TH><TD>5</TD><TD>6</TD><TD>7</TD><TD>8</TD><TD>9</TD><TD><font color=red>10</font></TD></TR><TR><TH>5</TH><TD>6</TD><TD>7</TD><TD>8</TD><TD>9</TD><TD><font color=red>10</font></TD><TD><font color=red>11</font></TD></TR><TR><TH>6</TH><TD>7</TD><TD>8</TD><TD>9</TD><TD><font color=red>10</font></TD><TD><font color=red>11</font></TD><TD><font color=red>12</font></TD></TR></TABLE>



Note: Each cell (not in bold) is the sum of the corresponding number in the first row and the first column (shown in bold). Ex: Say you roll a 6 and a 3. So you could choose the sixth row and intersect that with the 3rd column (or vice versa) to get 6+3=9



From the table, we can clearly see all the possible outcomes (there are 6*6=36 outcomes). Also, we can see from the table that there are 5 ways to roll a 10 or more (shown in red). So the probability is {{{5/36}}} which is roughly 0.13889 (which is a 13.889% chance)



If you need more help, email me at <a href="mailto:jim_thompson5910@hotmail.com?Subject=I%20Need%20Algebra%20Help">jim_thompson5910@hotmail.com</a>


Also, feel free to check out my tutoring <a href="http://www.freewebs.com/jimthompson5910/home.html">website</a>. 


Jim