Question 338529


{{{-x^3+x^2+42x}}} Start with the given expression.



{{{-x(x^2-x-42)}}} Factor out the GCF {{{-x}}}.



Now let's try to factor the inner expression {{{x^2-x-42}}}



---------------------------------------------------------------



Looking at the expression {{{x^2-x-42}}}, we can see that the first coefficient is {{{1}}}, the second coefficient is {{{-1}}}, and the last term is {{{-42}}}.



Now multiply the first coefficient {{{1}}} by the last term {{{-42}}} to get {{{(1)(-42)=-42}}}.



Now the question is: what two whole numbers multiply to {{{-42}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-1}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-42}}} (the previous product).



Factors of {{{-42}}}:

1,2,3,6,7,14,21,42

-1,-2,-3,-6,-7,-14,-21,-42



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-42}}}.

1*(-42) = -42
2*(-21) = -42
3*(-14) = -42
6*(-7) = -42
(-1)*(42) = -42
(-2)*(21) = -42
(-3)*(14) = -42
(-6)*(7) = -42


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-1}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-42</font></td><td  align="center"><font color=black>1+(-42)=-41</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>-21</font></td><td  align="center"><font color=black>2+(-21)=-19</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>-14</font></td><td  align="center"><font color=black>3+(-14)=-11</font></td></tr><tr><td  align="center"><font color=red>6</font></td><td  align="center"><font color=red>-7</font></td><td  align="center"><font color=red>6+(-7)=-1</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>42</font></td><td  align="center"><font color=black>-1+42=41</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>21</font></td><td  align="center"><font color=black>-2+21=19</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>14</font></td><td  align="center"><font color=black>-3+14=11</font></td></tr><tr><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>7</font></td><td  align="center"><font color=black>-6+7=1</font></td></tr></table>



From the table, we can see that the two numbers {{{6}}} and {{{-7}}} add to {{{-1}}} (the middle coefficient).



So the two numbers {{{6}}} and {{{-7}}} both multiply to {{{-42}}} <font size=4><b>and</b></font> add to {{{-1}}}



Now replace the middle term {{{-1x}}} with {{{6x-7x}}}. Remember, {{{6}}} and {{{-7}}} add to {{{-1}}}. So this shows us that {{{6x-7x=-1x}}}.



{{{x^2+highlight(6x-7x)-42}}} Replace the second term {{{-1x}}} with {{{6x-7x}}}.



{{{(x^2+6x)+(-7x-42)}}} Group the terms into two pairs.



{{{x(x+6)+(-7x-42)}}} Factor out the GCF {{{x}}} from the first group.



{{{x(x+6)-7(x+6)}}} Factor out {{{7}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(x-7)(x+6)}}} Combine like terms. Or factor out the common term {{{x+6}}}



--------------------------------------------------



So {{{-1x(x^2-x-42)}}} then factors further to {{{-(x-7)(x+6)}}}



===============================================================



Answer:



So {{{-x^3+x^2+42x}}} completely factors to {{{-(x-7)(x+6)}}}.



In other words, {{{-x^3+x^2+42x=-x(x-7)(x+6)}}}.



Note: you can check the answer by expanding {{{-x(x-7)(x+6)}}} to get {{{-x^3+x^2+42x}}} or by graphing the original expression and the answer (the two graphs should be identical).



If you need more help, email me at <a href="mailto:jim_thompson5910@hotmail.com?Subject=I%20Need%20Algebra%20Help">jim_thompson5910@hotmail.com</a>


Also, feel free to check out my tutoring <a href="http://www.freewebs.com/jimthompson5910/home.html">website</a>. 


Jim