Question 338847
<pre>
Each angle in an n-sided regular polygon must be {{{180(n-2)/n}}}°.

We see if the equation

{{{180(n-2)/n}}}{{{""=""}}}{{{110}}}

has a positive integer > 2 as a solution.

{{{180(n-2)}}}{{{""=""}}}{{{110n}}}

{{{180n-360}}}{{{""=""}}}{{{110n}}}

{{{70n}}}{{{""=""}}}{{{360}}}

{{{n}}}{{{""=""}}}{{{360/70}}}

{{{n}}}{{{""=""}}}{{{36/7}}}

{{{n}}}{{{""=""}}}{{{5&1/7}}}

So the answer is no because {{{5&1/7}}} is not a positive integer.

Edwin</pre>