Question 338272


Note: *[Tex \LARGE \left(x_{1}, y_{1}\right)] is the first point *[Tex \LARGE \left(0,1\right)]. So this means that {{{x[1]=0}}} and {{{y[1]=1}}}.

Also, *[Tex \LARGE \left(x_{2}, y_{2}\right)] is the second point *[Tex \LARGE \left(6,6\right)].  So this means that {{{x[2]=6}}} and {{{y[2]=6}}}.



{{{d=sqrt((x[1]-x[2])^2+(y[1]-y[2])^2)}}} Start with the distance formula.



{{{d=sqrt((0-6)^2+(1-6)^2)}}} Plug in {{{x[1]=0}}},  {{{x[2]=6}}}, {{{y[1]=1}}}, and {{{y[2]=6}}}.



{{{d=sqrt((-6)^2+(1-6)^2)}}} Subtract {{{6}}} from {{{0}}} to get {{{-6}}}.



{{{d=sqrt((-6)^2+(-5)^2)}}} Subtract {{{6}}} from {{{1}}} to get {{{-5}}}.



{{{d=sqrt(36+(-5)^2)}}} Square {{{-6}}} to get {{{36}}}.



{{{d=sqrt(36+25)}}} Square {{{-5}}} to get {{{25}}}.



{{{d=sqrt(61)}}} Add {{{36}}} to {{{25}}} to get {{{61}}}.



So our answer is {{{d=sqrt(61)}}} 



Which approximates to {{{d=7.81}}} 



So the distance between the two points is approximately 7.81 units. 



If you need more help, email me at <a href="mailto:jim_thompson5910@hotmail.com?Subject=I%20Need%20Algebra%20Help">jim_thompson5910@hotmail.com</a>


Also, feel free to check out my tutoring <a href="http://www.freewebs.com/jimthompson5910/home.html">website</a>. 


Jim