Question 337791
Please only post one problem at a time.



Looking at {{{3s^2-14s+8}}} we can see that the first term is {{{3s^2}}} and the last term is {{{8}}} where the coefficients are 3 and 8 respectively.


Now multiply the first coefficient 3 and the last coefficient 8 to get 24. Now what two numbers multiply to 24 and add to the  middle coefficient -14? Let's list all of the factors of 24:




Factors of 24:

1,2,3,4,6,8,12,24


-1,-2,-3,-4,-6,-8,-12,-24 ...List the negative factors as well. This will allow us to find all possible combinations


These factors pair up and multiply to 24

1*24

2*12

3*8

4*6

(-1)*(-24)

(-2)*(-12)

(-3)*(-8)

(-4)*(-6)


note: remember two negative numbers multiplied together make a positive number



Now which of these pairs add to -14? Lets make a table of all of the pairs of factors we multiplied and see which two numbers add to -14


<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td align="center">1</td><td align="center">24</td><td>1+24=25</td></tr><tr><td align="center">2</td><td align="center">12</td><td>2+12=14</td></tr><tr><td align="center">3</td><td align="center">8</td><td>3+8=11</td></tr><tr><td align="center">4</td><td align="center">6</td><td>4+6=10</td></tr><tr><td align="center">-1</td><td align="center">-24</td><td>-1+(-24)=-25</td></tr><tr><td align="center">-2</td><td align="center">-12</td><td>-2+(-12)=-14</td></tr><tr><td align="center">-3</td><td align="center">-8</td><td>-3+(-8)=-11</td></tr><tr><td align="center">-4</td><td align="center">-6</td><td>-4+(-6)=-10</td></tr></table>



From this list we can see that -2 and -12 add up to -14 and multiply to 24



Now looking at the expression {{{3s^2-14s+8}}}, replace {{{-14s}}} with {{{-2s+-12s}}} (notice {{{-2s+-12s}}} adds up to {{{-14s}}}. So it is equivalent to {{{-14s}}})


{{{3s^2+highlight(-2s+-12s)+8}}}



Now let's factor {{{3s^2-2s-12s+8}}} by grouping:



{{{(3s^2-2s)+(-12s+8)}}} Group like terms



{{{s(3s-2)-4(3s-2)}}} Factor out the GCF of {{{s}}} out of the first group. Factor out the GCF of {{{-4}}} out of the second group



{{{(s-4)(3s-2)}}} Since we have a common term of {{{3s-2}}}, we can combine like terms


So {{{3s^2-2s-12s+8}}} factors to {{{(s-4)(3s-2)}}}



So this also means that {{{3s^2-14s+8}}} factors to {{{(s-4)(3s-2)}}} (since {{{3s^2-14s+8}}} is equivalent to {{{3s^2-2s-12s+8}}})




------------------------------------------------------------




     Answer:

So {{{3s^2-14s+8}}} factors to {{{(s-4)(3s-2)}}}



If you need more help, email me at <a href="mailto:jim_thompson5910@hotmail.com?Subject=I%20Need%20Algebra%20Help">jim_thompson5910@hotmail.com</a>


Also, feel free to check out my tutoring <a href="http://www.freewebs.com/jimthompson5910/home.html">website</a>. 


Jim