Question 336832

From {{{-8x^2-10x+2}}} we can see that {{{a=-8}}}, {{{b=-10}}}, and {{{c=2}}}



{{{D=b^2-4ac}}} Start with the discriminant formula.



{{{D=(-10)^2-4(-8)(2)}}} Plug in {{{a=-8}}}, {{{b=-10}}}, and {{{c=2}}}



{{{D=100-4(-8)(2)}}} Square {{{-10}}} to get {{{100}}}



{{{D=100--64}}} Multiply {{{4(-8)(2)}}} to get {{{(-32)(2)=-64}}}



{{{D=100+64}}} Rewrite {{{D=100--64}}} as {{{D=100+64}}}



{{{D=164}}} Add {{{100}}} to {{{64}}} to get {{{164}}}



Since the discriminant is greater than zero, this means that there are two real solutions.



If you need more help, email me at <a href="mailto:jim_thompson5910@hotmail.com?Subject=I%20Need%20Algebra%20Help">jim_thompson5910@hotmail.com</a>


Also, feel free to check out my <a href="http://www.freewebs.com/jimthompson5910/home.html">website</a>. 


Jim