Question 335966


{{{(x+4/5)^2=19/25}}} Start with the given equation.



{{{x+4/5=""+-sqrt(19/25)}}} Take the square root of both sides.



{{{x+4/5=sqrt(19/25)}}} or {{{x+4/5=-sqrt(19/25)}}} Break up the "plus/minus" to form two equations.



{{{x+4/5=sqrt(19)/5}}} or {{{x+4/5=-sqrt(19)/5}}}  Simplify the square root.



{{{x=-4/5+sqrt(19)/5}}} or {{{x=-4/5-sqrt(19)/5}}} Subtract {{{4/5}}} from both sides.



{{{x=(-4+sqrt(19))/(5)}}} or {{{x=(-4-sqrt(19))/(5)}}} Combine the fractions.



--------------------------------------



Answer:



So the solutions are {{{x=(-4+sqrt(19))/(5)}}} or {{{x=(-4-sqrt(19))/(5)}}}.



If you need more help, email me at <a href="mailto:jim_thompson5910@hotmail.com?Subject=I%20Need%20Algebra%20Help">jim_thompson5910@hotmail.com</a>


Also, feel free to check out my <a href="http://www.freewebs.com/jimthompson5910/home.html">website</a>. 


Jim