Question 335490


Looking at the expression {{{7x^2-12x+6}}}, we can see that the first coefficient is {{{7}}}, the second coefficient is {{{-12}}}, and the last term is {{{6}}}.



Now multiply the first coefficient {{{7}}} by the last term {{{6}}} to get {{{(7)(6)=42}}}.



Now the question is: what two whole numbers multiply to {{{42}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-12}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{42}}} (the previous product).



Factors of {{{42}}}:

1,2,3,6,7,14,21,42

-1,-2,-3,-6,-7,-14,-21,-42



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{42}}}.

1*42 = 42
2*21 = 42
3*14 = 42
6*7 = 42
(-1)*(-42) = 42
(-2)*(-21) = 42
(-3)*(-14) = 42
(-6)*(-7) = 42


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-12}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>42</font></td><td  align="center"><font color=black>1+42=43</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>21</font></td><td  align="center"><font color=black>2+21=23</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>14</font></td><td  align="center"><font color=black>3+14=17</font></td></tr><tr><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>7</font></td><td  align="center"><font color=black>6+7=13</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-42</font></td><td  align="center"><font color=black>-1+(-42)=-43</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-21</font></td><td  align="center"><font color=black>-2+(-21)=-23</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>-14</font></td><td  align="center"><font color=black>-3+(-14)=-17</font></td></tr><tr><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>-7</font></td><td  align="center"><font color=black>-6+(-7)=-13</font></td></tr></table>



From the table, we can see that there are no pairs of numbers which add to {{{-12}}}. So {{{7x^2-12x+6}}} cannot be factored.



===============================================================


<a name="ans">


Answer:



So {{{7x^2-12x+6}}} doesn't factor at all (over the rational numbers).



So {{{7x^2-12x+6}}} is prime.