Question 334851
<font face="Garamond" size="+2">


Use the fact that *[tex \Large x^{-n}\ =\ \frac{1}{x^n}]


Use the fact that *[tex \Large \left(x^n\right)^m\ = x^{mn}]


Use the fact that *[tex \Large x^nx^m\ =\ x^{n\ +\ m}]


Rid yourself of parentheses first:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \frac{(m^{-2} n^3 p^4)^{-2} (mn^{-2} p^3)^4}{(mn^{-2} p^3)^{-4} (mn^2 p)^{-1} }]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \frac{(m^4 n^{-6} p^{-8}) (mn^{-8} p^{12})}{(mn^{8} p^{-12}) (mn^{-2} p^{-1}) }]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \frac{m^5 n^{-14} p^{4} }{m^2n^{6} p^{-13} }]


Now move negative exponents from denominator to numerator or vice versa to get rid of the negative signs:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \frac{m^5  p^{4} p^{13}}{m^2n^{6}n^{14}  }]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \frac{m^5  p^{17}}{m^2n^{20}  }]




John
*[tex \LARGE e^{i\pi} + 1 = 0]
My calculator said it, I believe it, that settles it
<img src="http://c0rk.blogs.com/gr0undzer0/darwin-fish.jpg">
</font>