Question 333898
{{{sqrt(108)/sqrt(2q^6)=sqrt(36*3)/sqrt(2*(q^3)^2)=(sqrt(36)*sqrt(3))/(sqrt(2)sqrt((q^3)^2))=(6*sqrt(3))/(q^3*sqrt(2))}}}



So {{{sqrt(108)/sqrt(2q^6)=(6*sqrt(3))/(q^3*sqrt(2))}}}



Now simplify {{{(6*sqrt(3))/(q^3*sqrt(2))}}} to get {{{(6*sqrt(3))/(q^3*sqrt(2))=(6*sqrt(3)*sqrt(2))/(q^3*sqrt(2)*sqrt(2))=(6*sqrt(6))/(q^3*2)=(3*sqrt(6))/(q^3)}}}



So {{{sqrt(108)/sqrt(2q^6)=(3*sqrt(6))/(q^3)}}}