Question 332189
If 525 mg of a radioactive element decays to 400 mg in 48 hours,
what is its half-life?
:
The half-life formula:  Ao*2^(-t/h) = A
Where
A = amt after t (400)
Ao = initial amt (525)
t = time (48 hrs)
h = half-life of substance
:
525*2^(-48/h) = 400
Divide both sides by 525
2^(-48/h) = {{{400/525}}}
2^(-48/h) = .762
Use nat logs
ln(2^(-48/h)) = ln(.762)
log equiv of exponents
{{{-48/h}}}*ln(2) = ln(.762)
{{{-48/h}}}= {{{ln(.762)/ln(2)}}}
using a calc
{{{-48/h}}} = -.392
-48 = -.392h
h = {{{(-48)/(-.392)}}}
h = +122.45 hr is the half-life of the substance
:
:
Check this in the half-life formula, using a calc
Ao*2^(-t/h) 
enter 525*2^(-48/122.45) results: 400.1 ~ 400; confirms our solution