Question 332078


Looking at the expression {{{6x^2-13x-5}}}, we can see that the first coefficient is {{{6}}}, the second coefficient is {{{-13}}}, and the last term is {{{-5}}}.



Now multiply the first coefficient {{{6}}} by the last term {{{-5}}} to get {{{(6)(-5)=-30}}}.



Now the question is: what two whole numbers multiply to {{{-30}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-13}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-30}}} (the previous product).



Factors of {{{-30}}}:

1,2,3,5,6,10,15,30

-1,-2,-3,-5,-6,-10,-15,-30



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-30}}}.

1*(-30) = -30
2*(-15) = -30
3*(-10) = -30
5*(-6) = -30
(-1)*(30) = -30
(-2)*(15) = -30
(-3)*(10) = -30
(-5)*(6) = -30


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-13}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-30</font></td><td  align="center"><font color=black>1+(-30)=-29</font></td></tr><tr><td  align="center"><font color=red>2</font></td><td  align="center"><font color=red>-15</font></td><td  align="center"><font color=red>2+(-15)=-13</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>-10</font></td><td  align="center"><font color=black>3+(-10)=-7</font></td></tr><tr><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>5+(-6)=-1</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>30</font></td><td  align="center"><font color=black>-1+30=29</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>15</font></td><td  align="center"><font color=black>-2+15=13</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>10</font></td><td  align="center"><font color=black>-3+10=7</font></td></tr><tr><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>-5+6=1</font></td></tr></table>



From the table, we can see that the two numbers {{{2}}} and {{{-15}}} add to {{{-13}}} (the middle coefficient).



So the two numbers {{{2}}} and {{{-15}}} both multiply to {{{-30}}} <font size=4><b>and</b></font> add to {{{-13}}}



Now replace the middle term {{{-13x}}} with {{{2x-15x}}}. Remember, {{{2}}} and {{{-15}}} add to {{{-13}}}. So this shows us that {{{2x-15x=-13x}}}.



{{{6x^2+highlight(2x-15x)-5}}} Replace the second term {{{-13x}}} with {{{2x-15x}}}.



{{{(6x^2+2x)+(-15x-5)}}} Group the terms into two pairs.



{{{2x(3x+1)+(-15x-5)}}} Factor out the GCF {{{2x}}} from the first group.



{{{2x(3x+1)-5(3x+1)}}} Factor out {{{5}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(2x-5)(3x+1)}}} Combine like terms. Or factor out the common term {{{3x+1}}}



===============================================================



Answer:



So {{{6x^2-13x-5}}} factors to {{{(2x-5)(3x+1)}}}.



In other words, {{{6x^2-13x-5=(2x-5)(3x+1)}}}.



Note: you can check the answer by expanding {{{(2x-5)(3x+1)}}} to get {{{6x^2-13x-5}}} or by graphing the original expression and the answer (the two graphs should be identical).