Question 38222
standard form of parabola vertex (0,0) and focus (0,5)
'p' is the distance from the vertex to the focus and is equal to 1/(4a)
p=5 .... so
5 = 1/(4a)
20a = 1
a = (1/20)
standard form: {{{y = a(x - h)^2 + k}}} where (h,k) is the vertex
{{{y = (1/20)(x)^2}}}
equation of ellipse vertex (-8,0), co-vertex (0,4) center (0,0)
{{{a=8}}}
{{{b=4}}}
standard form: {{{(((x - h)^2)/a^2)+((y - k)^2/b^2)=1}}} where the center is (h,k)
{{{(((x)^2)/64)+((y)^2/16)=1}}}