Question 329201
<font face="Garamond" size="+2">


If *[tex \Large 7y^\circ\ >\ 60], then *[tex \Large 12x^\circ\ +\ 3x^\circ\ <\ 120\ \Rightarrow\ \ x\ <\ 8]


If *[tex \Large x\ <\ 8] and *[tex \Large x\ \in\ \mathbb{Z}], then *[tex \Large x\ \in\ \{7,\,6,\,5,\,4,\,3,\,2,\,1\}]


If *[tex \Large x\ =\ 7], then *[tex \Large 15x\ =\ 105] and *[tex \Large 7y\ =\ 180\ -\ 105\ =\ 75], but *[tex \Large \frac{75}{7}\ \notin\ \mathbb{Z}]


So, if *[tex \Large x\ =\ 6], then *[tex \Large 15x\ =\ 90] and ...


And so on.  Keep going until you find a value for *[tex \Large 7y] that is divisible by 7. 


John
*[tex \LARGE e^{i\pi} + 1 = 0]
</font>