Question 327570
Let the side of the square equal s.
{{{(s+7)^2=196}}}
{{{s+7=14}}}
{{{highlight(s=7)}}}
.
.
.
The equation is in vertex form, {{{y=a(x-h)^2+k}}} where (h,k) is the vertex.
Comparing,
Vertex : ({{{-2}}},{{{2}}})
The vertex lies on the axis of symmetry, {{{x=-2}}}.
The coefficient of {{{x^2}}} term is positive so the parabola opens upwards and the value at the vertex is the minimum of the function.
{{{ymin=2}}}
.
.
.
{{{drawing(300,300,-10,10,-10,10,blue(line(-2,100,-2,-100)),grid(1),circle(-2,2,.3),graph(300,300,-10,10,-10,10,(1/5)(x+2)^2+2))}}}