Question 327006
First factor each of the terms looking for common factors to eliminate.
Then stage the division in steps.
{{{z^2-2z+1=(z-1)^2}}}
{{{z^2-1=(z-1)(z+1)}}}
{{{4z^2-z-3=(4z+3)(z-1)}}}
 So then,
{{{(z^2-2z+1)/(z^2-1)=(z-1)^2/((z-1)(z+1))}}}
{{{(z^2-2z+1)/(z^2-1)=(z-1)^cross(2)/(cross((z-1))(z+1))}}}
{{{(z^2-2z+1)/(z^2-1)=(z-1)/(z+1)}}}
And finally,
{{{((z^2-2z+1)/(z^2-1))/(4z^2-z-3)=((z-1)/(z+1))/((4z+3)(z-1))}}}
{{{((z^2-2z+1)/(z^2-1))/(4z^2-z-3)=(cross((z-1))/(z+1))/((4z+3)*cross((z-1)))}}}
{{{((z^2-2z+1)/(z^2-1))/(4z^2-z-3)=highlight(1/((z+1)(4z+3)))}}}