Question 325853
<font face="Garamond" size="+2">


Eq 1: *[tex \LARGE \ \ \ \ \ \ \ \ \ \ x\ +\ y\ =\ 1]


Eq 2: *[tex \LARGE \ \ \ \ \ \ \ \ \ \ 2x\ +\ y\ =\ 3]


Multiply Eq 1 by -1


Eq 3: *[tex \LARGE \ \ \ \ \ \ \ \ \ \ -x\ -\ y\ =\ -1]


Add Eq 2 to Eq 3:


Eq 3: *[tex \LARGE \ \ \ \ \ \ \ \ \ \ x\ +\ 0y\ =\ 2]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ x\ =\ 2]


Substitute back into Eq 1


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ 2\ +\ y\ =\ 1]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ y\ =\ -1]


The solution set is *[tex \LARGE  \{(2,-1)\}]



John
*[tex \LARGE e^{i\pi} + 1 = 0]
</font>