Question 325024
Factor

625r^6-5p^6


{{{5(125r^6 - p^6)}}} ------ Dividing by GCF, 5

We can rewrite the expression as a difference of 2 cubes:     5[{{{(5r^2)^3 - (p^2)^3}}}] 


Since {{{a^3 - b^3 = (a - b)(a^2 + ab + b^2)}}}, {{{(5r^2)^3 - (p^2)^3}}} = {{{(5r^2 - p^2)(25r^4 + 5p^2r^2 + p^4)}}}


Therefore, the factors of {{{625r^6 - 5p^6}}} are: 5[{{{highlight_green((5r^2 - p^2)(25r^4 + 5p^2r^2 + p^4))}}}]